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i ABSTRACT

The pressure distribution predicted by the modified Newtonian
theory is used to develop equations for the aerodynamic forces,
moments, and stability derivatives for components of hypersonic lift-

W ing configurations. In conjunction with the equations, a set of charts
is presented to enable simple determination of the aerodynamic char-
acteristics of swept cylinders, swept wedges, spherical segments, and
cone frustums at zero sideslip and angles of attack from 0 to 180 deg.

; This method allows evaluation of most delta wing-body combinations

! without the need for numerical or graphical integration. As an example

i of the procedure, the theoretical characteristics of a blunt, 75-deg

swept delta wing are calculated and compared with experimental results.
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NOMENCLATURE

Body surface area
Base area of swept-wedge wing half
Planform area of swept-wedge wing half
Side area of swept-wedge wing half
Half-span of swept-wedge wing
Axial-force coefficient, Fy/q_S
Drag coefficient, drag/q_S
Lift coefficient, lift/q S
Rolling-moment coefficient, M,/q_S4
Rolling-moment coefficient derivative, 9C,;/dB at g = 0,
1/radian
Pitching-moment coefficient, My/q_SZ£
Normal-force coefficient, Fyx/q, S
Yawing-moment coefficient, Mz/q_S 2
Yawing-moment coefficient derivative, 4C,/dB8 at B = 0,
1/radian
Pressure coefficient, (p - p_)/q_
Pressure coefficient at stagnation point

Pressure coefficient at nose of pointed body

Side-force coefficient, Fy/q_S

Side-force coefficient derivative, ¢Cy/dB at 8 = 0,
1/radian

Chord of swept-wedge wing
Function defining body surface
Axial force

Normal force

Side force
Vertical displacement of swept-wedge wing half from
wing centerline

Unit vectors directed along the X-, Y-, and Z- axes,
respectively

ix
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(n,x), (n,y),

(n, z)

=

Proportionality constant used in the modified Newtonian
theory

Body length

-Delta-wing length, measured from theoretical apex

Lift-to-drag ratio

Moment coefficient reference length
Rolling moment

Pitching moment

Yawing moment

Free-stream Mach number

Angles between unit normal vector, n, and the positive
X-, Y-, and Z-axes, respectively

Inward directed unit vector normal to the body surface
Surface static pressure

Stagnation pressure behind normal shock
Free-stream static pressure
Free-stream dynamic iafessure

Radius of curvature “

Base radius of cone frustum

Nose radius of cone frustum

Local body radius on cone frustum
Reference area

Thickness of swept-wedge wing half
Free-stream velocity

Orthogonal body axes

Moment transfer lengths

Coordinates along X-, Y-, and Z- axes
Angle of attack

Angle of attack where ¢ = —~ ¢’ on swept-cylinder leading
edge

Angle between body X- axis and free-stream velocity
vector
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Angle of sideslip’
Dihedral angle of swept-wedge wing

Ratio of specific heats and wedge angle normal to lead-
ing edge of swept-wedge wing

Half-angle of cone frustum and base tangent angle of

-spherical segment

Nose half-angle of pointed body

Centerline angle of swept-wedge wing measured in
X, Z- plane

Angle between surface unit inner normal vector and free-
stream velocity vector

Angular coordinate which defines cross-sectional planes
Angle defining base location of spherical segment
Sweepback angle and base angle of spherical wedge
Cone frustum bluntness ratio, R,/Rjp

Angle of body roll measured in Y, Z- plane

Angular coordinate which defines circumferential position
in a cross-sectional plane

Angle defining circumferential position where surface
becomes shielded from the flow

Angle defining circumferential extent of swept-cylinder
leading edge

Lower half of swept-wedge wing

Upper half of swept-wedge wing

xi
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1.0 INTRODUCTION

In the design and testing of lifting re-entry configurations, there is
often the need for a simple, approximate method of predicting the pres-
sures and forces acting on the vehicle at hypersonic speeds. The New-
tonian theory has proven very useful for this purpose. A number of
studies have shown the accuracy of this simple theory in predicting the
pressures and forces on such configurations as sharp and blunted cones
(Refs. 1 through 5), circular cylinders (Refs. 6 and 7), hemispheres
(Ref. 7), and delta wings (Ref. 8). Although the Newtonian theory is
easily applied to the calculation of pressure distribution, integration of
the pressure over the body surface to obtain total forces and moments
can be difficult and time consuming. Hence, the theory is not always
used to full advantage. Design charts which simplify the evaluation of
body loads have been developed for complete and partial bodies of revo-
lution (Refs. 5 and 9 through 13), elliptic cones (Refs. 5, 14, and 15),
delta-wing components (Ref. 13), and three-dimensional bodies (Ref. 16).
The charts of Refs. 5, 9, 11, 13, 14, and 15 provide total loads and
derivatives for selected bodies, while the methods of Refs. 10, 12, and
16 apply to arbitrary bodies but require numerical or graphical integration.

The purpose of the present report is to extend the scope of the pre-
vious design charts by providing additional aerodynamic characteristics
and an increased angle-of-attack range. To avoid a requirement of
numerical integration, only selected configurations consisting of typical
delta-wing and body components are considered. Equations are derived
for the pressure distribution on each component, and this distribution is
then integrated over the surface area in closed form to obtain total forces
and moments. Equations and charts are given for the longitudinal sta-
bility and performance coefficients (Cy, Ca, Cy): and the directional and
lateral stability derivatives CYﬁ’ Cnﬁ, CJB) for an angle-of-attack range
of 0 to 180 deg at zero sideslip.

An example of the use of the charts is given in the appendix, where
the aerodynamic characteristics of a blunt, 75-deg swept delta wing are
computed and compared with experimental results.

2.0 DEVELOPMENT OF EQUATIONS

The Newtonian theory has been discussed in a number of references,
and only a brief summary will be given here. A thorough analysis of this
theoretical method is given by Hayes and Probstein in Ref. 17.

Manuscript received January 1964,
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Newton calculated the force on a body by assuming that the impact
of fluid particles was completely inelastic for the normal component of
momentum and was frictionless. Thus, the normal component of mo-
mentum is converted to a pressure force on the body while the tangen-
tial component remains unchanged. The analysis based on these
assumptions gives the surface pressure coefficient, Cp, as

Cp =2 cos” 7 (1)

where 7 is the angle between the free-stream velocity vector and the
inward directed unit vector normal to the surface. ’

At high Mach numbers the disturbed region in front of a body be-
comes very limited in extent. The bow shock wave has approximately
the same inclination as the bodyand is separated from the body surface
by a very thin, practically inviscid, shock layer. With this flow geom-
etry, the normal momentum of impinging molecules is lost inelastically
and the tangential component of momentum is conserved. Hence,
Newton's analysis is realistic for this type of flow, and the validity of
the analysis increases as the shock-layer thickness decreases. -For
the shock wave to approach the inclination of the body, the gas dynamic
equations show that the ratio of the density ahead of the shock to that
behind the shock must approach zero. The equations further show that
for the density ratio to approach zero, the Mach number must approach
infinity and the ratio of specific heats must approach unity. If these
Newtonian conditions (M » «, y » 1) are satisfied, the Newtonian pres-
sure coefficient, Eq. (1), is identical to that given by the oblique shock
relations for the pressure immediately behind the shock wave.

In Newton's analysis, the impinging molecules leave the body surface
along an unaccelerated path. However, in the case of a curved body with
a thin shock layer, the particles are constrained in the shock layer and
must follow an accelerated path. Therefore, for a correct analysis
Eq. (1) must be modified to allow for the pressure gradient resulting from
the centrifugal forces acting on the particles. This correction was first
obtained by Busemann (Ref. 18), and the rational theory including the
correction has been called the Newton-Busemann theory in Ref. 17.
ever, despite the theoretical correctness of the Newton-Busemann rela-
tion, the simple Newtonian theory has been found to agree much better
with experimental data (e. g., Ref. 7), and the equations given in the pres-
ent paper have not been corrected for centrifugal effects.

How-

Equation (1) has been modified by a number of investigators to pro-
vide a better correlation with experimental data for several classes of
The modified forms of the equation have the general relation,

(2)

bodies.
CP = K coszn
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where K is a multiplicative factor which is used to match certain limit-
ing conditions. For a flat plate with attached shock (i.e., at low angles
of attack), Love (Ref. 19) suggested that K = y + 1 provides better
agreement with the exact oblique shock solution. For a slender pointed
body with attached shock, best agreement with exact theory is obtained
by using either the simple Newtonian value of K = 2 or the value
suggested in Ref. 19 of K = _Si’ﬂis—, where 6,,se is the surface angle

sin? 3n°se

at the nose and Cp, .. is the exact value of pressure coefficient for this
angle. ILees (Ref. 20) suggested that for a blunt body with detached
shock wave the Newtonian theory could be modified to match conditions

. p - poo - .
at the stagnation point by letting K = C,__,, = 2 ®  which is closely

oo
approximated by K = y + 3/y + 1 for large Mach numbers. In the present
derivations, the modified form of the Newtonian approximation as given
in Eq. (2) will be used with an arbitrary value of K.

The angle, 7, between the velocity vector {/w and the surface unit
inner normal vector » is determined by the scalar product of the two
vectors. The velocity vector (Fig. 1) is

\700=—V°° (7 cos a cos,8+-§sin,3+isina cos f3) (3)
where 7, j, and k are unit vectors directed along the X-, Y-, and

Z-axes. The body surface may be described by the equation
F(x,y,z) = 0. Then the inward directed unit vector normal to the body

&

surface is

(4a)

n =1 cos (n, x) + j cos(n,y) + k cos (n, z)

where (n,x), (n,y), and (n, z) are the angles between n and the positive
X~, Y-, and Z-axes, respectively, and their cosines are given by

JOF / dx
V(dF/dx) + (9F /dy) + (OF /92 )

cos (n,x) = -

cos (n,y) = - P /9y : (4b)
V(OF /0x) + (9F £dy) + (9F 19z)
cos (n,z) = — zaF/az = -
V(OF £9x)" + (F /y)* + (OF /9z)
Thus,
Vo - n
oSTm = TN (5)

- [cosa cos B cos (n,x) + sin8 cos(n,y) + sina cos 8 cos (n,z)]
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The Newtonian theory predicts pressures only on surfaces which face
the flow. For surfaces which are shielded from the flow, it is
assumed that the surface pressure is equal to the free-stream static
pressure and C, = 0. Therefore, Eqgs. (1) and (2) are applicable only

for cosn 2 0.

Force and moment coefficient nomenclature utilized in the deriva-
tion is shown in Fig. 1. The coefficients are non-dimensionalized by
an arbitrary reference area, S, and, in the case of moment coefficients,
by an arbitrary reference length, £. The moment reference point of
each component is given in the corresponding figure. The coefficients
are obtained by integrating the Newtonian pressure distribution over the
body surface area, A, as indicated in the following general equations
where the moment reference point is at the origin of the axes:

Cy = qilg - - = Jf cosy cos(n,2) dA (6)
Ca = ins e Jf cos’ cos (n,x) dA (7)
Cm = q:‘gz - - ‘sKT [ffA x cos” 7 cos (n,2)dA = [f 2 cos’n cos (n, x)dA] (8)
Cy = quS - —’;— JI eos’q cos (n,y)dA (9)
Ca = qul - [ffA x cos’ 7 cos (n,y)dA = [f y cos' cos (n, x) dA | (10)
c, = quﬂ - ‘sKT [ffA ycosz}, cos (n, 2) dA =[] 2 cos’ n cos (n,y)dA | (11)

In the integration over the surface area, it is assumed that G, =0
on all surfaces shielded from the flow and on all flat surfaces (except
in the case of the swept wedge) because these surfaces are usually con-
cealed by other body components. Equations and charts are given for
components having vertical symmetry and for the corresponding flat-
topped components. For flat-bottomed components, the loads may be
determined by taking the difference between the loads acting on the com-
plete component and those acting on the flat-topped component and adding
the pressure load of the flat lower surface to the normal force and

pitching moment.
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2.1 DELTA-WING COMPONENTS

The basic components of a delta wing are the nose, leading edge,
and wing. The loads on these components are computed in the fol-
lowing sections. The method of combining the components to give a
complete wing is described in Section 2. 3.

2.1.1 Spherical-Wedge Nose

The nose of a delta wing is usually a spherical wedge. If the wing
centerline angle ¢ (see Fig. F) is not zero, the nose is not exactly
spherical, but the error in force coefficients will be negligible when ¢
is small. The nomenclature used in the derivation is shown in Fig. A.

Y

oy
~
N\

Section A-A

Moment Reference Point

Yz

Fig. A Spherical-Wedge Nose

The direction bosines of the inward directed unit normal vector, n, as
obtained from Eq. (4b) or by analytic geometry are

cos (n,x) = ~ cos ¢ cos @
cos (n,y) = cos¢ sinf (12)
cos (n,z) = — sin¢
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The angle 7 between the free-stream velocity and the normal vector is
obtained from Eq. (5) which gives

cosn = cos 3{cos a cos ¢ cos @ + sina sin ) ~ sin 8 cos ¢ sin 6 (13)
The pressure distribution over the nose is given by Eq. (2) as

Cp = K coszn

The value of ¢ at which the surface becomes shielded from the flow is
designated as ¢, and is defined by C, = 0 or cosn = 0, thus

_ sinf3 sin @ ~ cos B cos a cos §
tan ¢° - cos 8 sina (14)
and at 8 = 0
_ -1 cos 0 o 14a
b, = tan < tan a > : ( )

The elemental surface area is given by
dA = R® cospd¢pd 0 ‘ (15)

As was mentioned previously, it is assumed that Cp, = 0 on the flat
base surfaces even at angles of attack where these surfaces are not
shielded from the flow. All coefficients and derivatives are evalu-

ated at g8 = 0.
2.1.1.1 Normal-Force Coefficient
The normal-force coefficient is given by Eq. (6):

CN = - —g— ffA cos’ 7 cos (n, z) dA

Since the body has lateral symmetry, this equation may be integrated
over the left side and the results multiplied by 2. Then, for 0 £ a < 7,

A 72
Cn = 2KSR2 / qu cos'n sing cosp dpd o (16)
0 P
Substituting the value for cos 7 at 8 = 0 from Eq. (13) and performing
the indicated integrations gives the normal-force coefficient as a
function of « and A. Note that the equation must be evaluated by inte-

- grating first between ¢ = ¢, and ¢ = #/2 and then integrating the result-

ing function between 6 = 0 and 6 = A since ¢, is a function of 6.
Then,

C S _ sin a [cos a sin A(—’—T— + tan_ ' —°°§—A> + tan ! i
N KR 9 9 tan a an | (sin @ tan A) (17)
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Equation (17) was evaluated for a = 0 to 180 deg and A = 60 to 90 deg

and the results are presented in Fig. 2a.
2.1.1.2 Axial-Force Coefficient
The axial-force coefficient is given by Eq. (7):

Cpr = ~ ——SI’(_ ffA cos’n cos (n, x)dA

Then, for 0 < a < 7,

2 A /2
CA=i-I§L fo qu cos” 7 cos’ ¢ cos @ dpd 0 (18)

Integration of Eq. (18) gives

Ca S 7 = L [(sinza sin A + 3 cos’ @ sinA ~ cos’ a sin’ A) (i + tan” ' —CO—S—A—)
KR 4 2 tan a

(19)

T . .
+ 2 cos a tan (sin @ tan A) + sina cos a sin A cos A]

The numerical evaluation of Eq. (19) is presented in Fig. 2b.

2.1.1.3 Pitching-Moment Coefficient

Since the force on any element of surface is directed toward the
center of curvature, the resultant force acts through the center, and

the moment about the reference point is zero.
2.1.1.4 Side-Force Coefficient Derivative

The side-force coefficient is given by Eq. (9):

Cy = —é—(- ffA cos’ 7 cos (n,y)dA

For either side of the nose, at 0 £ a < wn,
KR2 +A w/2 . . 5
= inf d¢odo 0
Cy = ¢ S fo f(]SO(B) cos 77 cos ¢ sin ¢ (20)

where the upper sign corresponds to the left side of the nose and the
lower sign corresponds to the right side. The derivative of the side-

force coefficient with respect to B is

2 A /2
KR I 9 f cos’ 7 cos' ¢ dpd 0 (21)

sin 0

B s o 9B o (B
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Since the lower limit, ¢,, is a function of B8, the Liebnitz rule is used
to obtain the derivative
/2

g [ 2 2 2 2, O dcos’n 2
B g, gy o T e # 4 = oot m(goeostho g o S cos” g d g

By definition, cos’7 (¢_ ) = 0, and d¢_ /3B is finite, so the first term is
zero. Thus :

KR A 7/2 9 cos™ . ) ) 929
Cyg =+ —5 f f¢0(6)—75—cos¢smod¢d0 (22)

Since ¢ and ¢ are independent of B, the derivative at 8 = 0 is

2 +A /2 A 2
C -+ KR Jdcos 7 cos® & sin (23)
(“B)ps = 5 b Ko, ( ap >,8=o~ #enbdods

From Eq. (13)

<aacﬁos n)ﬁ% ~ ~ 2cos ¢ sin 0 (cos a cos ¢ cos 0 + sina sinp) (24)

Substituting Eq. (24) in Eq. (23) shows that CYB is the same for both
sides of the nose. Then, multiplying Eq. (23) by 2 and performing the

integration gives

(25)

Cy 52 = - llicosa sin’ A (JL+ tan” M)
B Kknr 2 2 tan a

+ tan” ' (sina tan A) - sin a sin A cos A]
The numerical evaluation of Eq. (25) is presented in Fig. 2c.
2.1.1.5 Yowing-Moment and Rolling-Moment Coefficient Derivatives

As was the case with pitching moment, the yawing-moment and
rolling-moment coefficients and their derivatives are zero about the

reference point.
2.1.2 Flat-Topped Spherical-Wedge Nose

The geometry of the flat-topped spherical wedge is shown in Fig. B.

The direction cosines, pressure coefficient, and elemental area
are the same as for the complete spherical wedge. For 0 < a £ 7/2 no
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ol

Section A-A

Moment Reference Point

o )

Fig. B Flat-Topped Spherical-Wedge Nose

part of the curved surface is shielded from the flow, so the limits of
integration on ¢ become 0 to »/2. Then, Eqgs. (16), (18), and (23) give

the following results:

Cn 52 = 1 [17 sin @ cos @ sin A + cos’ @ sin A cos A + A(1 + sin’ a)] (26)

KR
. Ca - 5 7 = 1 [——3—1— cos” a (sin'A - ﬂl} + - sin’ a sin A 27
: KR s L 2 3 2 ‘ (27)

+ 2cos a sina (A + sin A cos~A)]

"‘_'. Cy S ~ = - 4 [77 cosa sin A + 2sina (A - sin A cos A)] (28)
- B KR 4
- where A is in radians. The moment coefficients and their derivatives

are zero for the indicated reference point. For « 2 #/2 the equations

for the complete spherical wedge also apply to the flat-topped spherical
wedge.
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The characteristics of the flat-topped spherical wedge are pre- N
sented in Fig. 3.
2.1.3 Swept-Cylinder Leading Edge

The delta-wing leading edge which is analyzed in this section con-
sists of two symmetrically swept circular cylinders. The nomencla-
ture used in the derivation is shown in Fig. C.

% Moment Ref:;ricep/m

“A

l

S — *" - Section A-A

Fig. C Swept-Cylinder Leading Edge

The two sides are treated as a unit in the analysis, and the sweepback
angle A is taken as positive in the equations for the leading-edge coef-
ficients. Where the two sides must be considered separately, as in -
Eqgs. (29) and (30), the sign convention is A > 0 for the right side and .
A < 0 for the left side.

10
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The direction cosines of the inward directed unit normal vector are

cos (n,x) = ~ cos ¢ cos A
cos (n,y) = = cos ¢ sin A (29)
cos (n, z) = — sin ¢

Then, from Eq. (5)
cosn = cos B (cosa cosp cos A + sina sin¢d) + sinfB cos ¢ sin A  (30)

At B = 0 the surface becomes shielded from the flow along a line de-
fined by ¢ = ¢,, where

po = — tan (%‘;ST%) (31)
The elemental surface area is
dA = 2LR d¢ (32)

The integration of the pressure distribution over the surface has as
its limit the geometric angle ¢’, which is always positive. For a lead-
ing edge which is tangent to the wing surface, ¢’ is determined by the
wing sweepback and dihedral angles A and I', as shown in Fig. D.

\

Section A-A

Fig. D Leading Edge and Wing Geometry

11
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Thus,
P’ = % -y (332a)
and oy
-1 an
v = tan (sth> (33b)
Therefore : .
6 = ™ (smA) (33c)

For a leading edge which is not tangent to the wing surface, Eq. (33) is
not valid and ¢” must be determined from the leading-edge geometry.
It is assumed that C, = 0 on all flat surfaces, and the coefficients and
their derivatives are evaluated at 8 = 0.

2.1.3.1 Normal-Force Coefficient

The normal-force coefficient is given by

’

CN = "_2KLR [ coszn sin¢g do (34)
S bo (or—")

If ¢” < ¢, 1|, the lower limit of integration is ¢ = ~¢’. The limit
changes to ¢ = ¢, at ¢, = ~¢” or at a = a,. where

a0 = tan™ (__lAi) | (35)
Evaluating Eq. (34) for 0 £ a < g, with the lower limit ~¢7,

S - 8 s .8, .,
Cn KLR = 3 sSinacosa cos A sin” ¢ ) (36)

and for 'a, £ a £ (7 - a,) with the lower limit ¢, ,

Cn KiR = —§— [(siqz a — cos’ a cos  A) (cos’ ¢~ cos’ bo) (37)

— 3sin"a (cos ¢’ ~ cos $o) + 2sina cos a cos A (sin’ ¢’ — sin’ qSo)]

where ¢, and ¢’ are given by Egs. (31) and (33c), respectively. If the
wing dihedral, I', is small, the leading edge will be closely approxi-
mated by a complete hemicylinder (¢ = #/2). Then, from Eqgs. (31)
and (37) for 0 < a < 7

Cn KSLR: % sin a <Cosa cos A + V1 - sin* A C052a> (38)

Equation (38) was evaluated for a« = 0 to 180 deg and A = 60 to 90 deg,
and the results are presented in Fig. 4a.

12
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2.1.3.2 Axial-Force Coefficient

The axial-force coefficient is given by

‘ b’
Cp = 2KLR cos’ 7 cos & cos A d “ (39)
S f(ﬁo(or-—(}s/) 7 ¢) (Z)
Then, for 0 < a £ a,
Ca KSLR= 40035A [(sinza — cos” a cos’ A)sin’ ¢’ + 3 cos’ a cos’ A sin gz’)'] (40)

and for a, £ a < (7 - ay)

Ca KiR - 2 Cgs A l:(sin2 a — cos” a cos  A) (sin3 R si‘n3 bg) (1)

+ 3cos’ a cos’ A (sin ¢’ ~ sin ¢y)
- 2sina cos a cos A (cos3¢>' - cos (f)o):,

For the hemicylinder (¢’ = #/2),

. 2 2
Ca KiR: 4CgSA < Sm2a + cos" @ cos' A + cosa cos A V1 - sin’ A cos2a> (42)

The numerical evaluation of Eq. (42) is presented in Fig. 4b.
2.1.3.3 Pitching-Moment Coefficient
The resultant force acts through the center of curvature at a point

midway between the ends. Thus,

_ L sin A
Cn = CN P zn o (43)

2.1.3.4 Side-Force Coefficient Derivative

The side-force coefficient for either side (with proper sign con-
vention on A) is ‘ ‘

’

Cy = - KER_ f¢o.<or~¢,) coszr] cpsgb sin A d ¢ v (44)

Using the same procedure as was used with the spherical-wedge nose,

Cyg = - KLR , <i5_;§:2_’7>18:0 cos & sin A d b (45)

13
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where

J cos 7 = 2cos ¢ sin A (cos a cos ¢ cos A + sina sin ) (46)
9B B=o

Substituting Eq. (46) in Eq. (45) shows that Cyg is the same for both
sides. Then, multiplying Eq. (45) by 2 and performing the integration
gives for 0 < a < a, -

3 ’
. . , sin ¢
CYB —KER = — 8cos a cos A sin’ A(sm b - 3 > - (47

and for a;, < a £ (7 ~ ag)

Cy S __4 sinzA[cos a cos A (3sin¢” — 3 sin ¢y ~ sin’ b + sin’ bo)
B XL 3 (48)
~ sin a (cos’ ¢~ cos’ qSo)]

For the hemicylinder (¢ = #/2),

‘ . 2 2 2
Cy, —— =~ % sin”A|[2cosa cos A + sin gt chos a2C°S A (49)
B KLR 8 \/ 1—sin A cos a

The numerical evaluation of Eq. (49) is presented in Fig. 4c.
2.1.3.5 Yawing-Moment Coefficient Derivative

The yawing-moment coefficient is given by Eq. (10):

Cp = SLE[IIA x cos 7 cos (n,y) dA —= [[ y cos’n cos (n,x) dAJ
A

From Fig. C, x = + —1—5— sinA and y = —%. cos A, where the upper sign

applies to the right side and the lower sign applies to the left side.
Since x and y are not functions of ¢, the yawing-moment coefficient for

either side is

Cp =% —I (Cy sinA + Ca cos A)

24

Comparing Eq. (39) and Eq. (44) gives
. =Gy
Ca = tan A

Then,

_ L 2 sin” A ~ 1
Cn = # Cy 24 ( sin A )
The total yawing-moment coefficient for both sides is

_ L 2 sin” A =1
Co = (CYne * Cypoqy) 24 ( Sslil;A )

14
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and the derivative is

_ L 2 sin” A—1
~Cnﬁ - <CYBright i CYﬁleft) 24 ( sin A )
CYB
But, C = C =
YB.ight YBlet: 2
Therefore
= L 2 sin2 A-1 ) ’
Cnﬂ CY/3 22 ( sin A (50)

2.1.3.6 Rolling-Moment Coefficient Derivative
The rolling-moment coefficient is given by Eq. (11):

C, = —S—I(;—[ff ycoszn cos (n,z)dA - [ zco‘szq cos(n,y)dA]
A A
From Fig.C, y = + —15— cos A and Z = 0, where the upper sign applies

to the right side and the lower sign applies to the left side. Since y is
not a function of ¢, the rolling-moment coefficient for either side is

Cy, =+ —L2—°£9§A (-Cn)

The total rolling-moment coefficient for both sides is
L
Cy = gozs A (CNleft - CNright)

and the derivative is

C - L cos A C - C
i 24 ( NBlese Nﬁ:i,;b:)

For either side, Eq. (34) gives
b’ 2
C _ _KLR_ dcos 1 . d
Ng = s g (eemgn OB _>ﬁ=o singd

Integrating gives

’,

C=2KLR-A[- in’ ¢ — A ’]
Nﬁ Y sin sin @ sin ¢ cos a cos cos ¢ Bo lor—b") (51)
Thus,
C - -C

NBiet: leright
and

2 . ¢,
Cllg _ _—2KL ?SC;SASIHA [sin a sin’ ¢ — cosa cos A cos’ ¢]¢° (or—b") (52)

15
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For 0 £ a £ ae

St _ 4 . . . 3 ,
Cgﬁ SR - y sina cos A sin A sin ¢ (53)

and for a, £ a £(7w - a,)

CL‘B —E%%— = - % cos A sin A [sina (sinaqﬁ' - sin’ bo) (54)
— cos a cos A (cos’ ¢’ — cos’ 950)]

For the hemicylinder (¢’ = #/2)

St 2 . . cos a cos A
=~ < cos A sinA sma(1+ )
KL*R 3 vV 1-sin? A cos’a (55)

C
tg
The numerical evaluation of Eq. (55) is presented in Fig. 4d.
2.1.4 Flat-Topped Swept-Cylinder Leading Edge

The geometry of the flat-topped swept-cylinder leading edge is
shown in Fig. E.

Y

-/
fo5

B
Section A-A

=
X h .
i

Fig. E Flat-Topped Swept-Cylinder Leading Edge
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The directional cosines, pressure coefficient, and elemental
area are the same as for the complete cylindrical leading edge. For
0 £ a = #/2, the limits of integration on ¢ are from 0 to ¢’. Then
Eqgs. (34), (39), (45), and (52) give

Cn KEB - % [(Sinza — cos’a coszA)(cosa¢' ~ 1)~ 3 sin’ a (cos ¢~ 1)
+ 2 sina cos a cos A sin3¢'] (56)
Ca S _ . 2 cosA[(sinza — cos’ a cos” A) sin’ ¢’ + 3 cos®a cos’ A sin ¢’
KLR 3 (57)
~ 2 sina cosa cos A (cos’ ¢’ — 1)]
CYB KSLR = --¥;'— sinzAl:cos a cos A(3 sin ¢’ ~ sin’ ¢°) — sina (cos’ ¢” — 1')](58) -

Clﬁ K—izﬁ = - % cos A sin A [sina sin’ ¢’ — cosa cos A (cos’ ¢’ — 1):, (59)

For the hemicylinder with ¢” = #»/2,

2 2

C S _ 4 ( . 2 . cos” a_cos A)

N ¥R 3 sin" @ + sina cos a cos A + S S— (60)
Ca 5 = % cosA (_ii‘_l___ + sina cosa cos A + cos a cos’ A)

KLR 3 2 (61)

Cy, —>— = — % Ssii® A (si A

Yﬁ XLE -~ 3 sin sina + 2 cos a cos A) (62)
C,, =St - _ 2 A sin A (si A)

1,8 Sk 3 cos sin sin a + cos a cos (63)

The pitching-moment coefficient and yawing-moment coefficient de-
rivative are given by Eqgs. (43) and (50), respectively, with Cy and
CY,B determined from Eqgs. (56) and (58) or (60) and (62). For « 2 #/2,
the equations for the complete leading edge also apply to the flat-topped

leading edge.

The characteristics of the flat-topped swept-cylinder with ¢’ = #/2
are given in Fig. 5.

17
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2.1.5 Swept-Wedge Wing

A planar wing having sweepback and dihedral is analyzed in this
section. The nomenclature used in the derivation is shown in Fig. F.

Leading Edge Centerline

Z Moment Reference Point

Fig. F Swept-Wedge Wing

The sweepback angle, A, is taken as positive in the equations for the
coefficients of the entire wing. Where the sides must be considered
separately, as in Egs. {65) and (66), the sign convention is A > 0 for
the right side and A < 0 for the left side. The centerline angle, ¢, is
always positive and is related to the dihedral angle, I', and the sweep-
back angle, A, by )

 —nm (222T) (60

The direction cosines of the inward directed unit normal vector are

— sin €
V1 + tan? A sin? e

cos (n, x)

~ tan A sin ¢ (65)

cos (n, y)
Y V1+tan? Asin’e

t cos €
V1+tan? A sin?¢

cos (n, z) =

18
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where the upper sign applies to the upper surface and the lower sign

applies to the lower surface. Then, from Eq. (5)

cos,Bsin(ei a) + sinﬂlan/\sine (66)
vV 1+ tan? A sin? ¢

cos 7 =

where (¢ + a) is used for the lower surface and (¢ — «) is used for the

upper surface. At B = 0, the upper surface becomes shielded from the
flow at « = ¢, and the lower surface is shielded at a = » - ¢. Equa-

tion (66) is valid only within these limits.

Since the pressure coefficient is constant over each of the wedge
surfaces it is not necessary to integrate to obtain total loads. The
force and moment coefficients are most easily calculated by using the
projected planform, base, and side areas. The total planform area,

Ap, is : ; _
Ap = be N R , (67)

The base area, A, for either half of wing is
Ay = bt (68)

The side area, Ag, for either half of wing is
. Ag = *92'[— , (69)

In the following derivations it is assumed that C, = 0 on the base of
the wing and that the wing is at 8 = 0. Separate equations are given for
the lower and upper halves, and the total wing loads may be obtained by
combining the two halves. No graphical results are presented because

of the simplicity of the equations.

2.1.5.1 Normal-Force Coefficient

For the lower half of the wing at 0 < a £ (7 - ¢) the pressure coef-

ficient is
K sin? (e + a) (70) -

1 +tan? A sin? ¢

Cp

L= Kcosz.T] =

and the normal-force coefficient is
' A
Cny, = Cpy, *gg— , . (71)
at (w -~ €¢) S a<a, Cny =0
For the upper half of the wing at 0 < a £ ¢, the pressure coefficient is

_ K sin? (e—a)
CPU N 1+ tan? A sin? ¢ (72)
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and the normal-force coefficient is

Ap

CNy = = Cpy — (73)
Ate< a<m, Cyy = 0.
2.1.5.2 Axial-Force Coefficient
For the lower half of the wing at 0 £ a < (7 ~ &)
Cap = Cpy %‘ (74)
For the upper half at 0 < a £ ¢
Cag = Cpy —o- | (75)
where CPL and CpU are givén in Egs. (70) and (72) |
2.1.5.3 Pitching-Moment Coefficient |
For the lower half of the wing at 0 < a £ (7 - ¢)
Cmy = CNy 55 - Cap L (+ +h)
o_r>f_rom Eqgs. (71) and (74) _
| Cmy = 'CijL [—;— ~ tan € (-;— + h)] | (76)
For the upper half at 0 < a < ¢

I

C
Cmyy Ny [_? ~ tane (;— + h” (77)

If the leading edge is tangent to the wing surface, h is given by

h =R cosy (78)

where R is the leading edge radius and y is given by Eq (33b). If the
leading edge is not tangent to the wing, Eq. (78) is not valid and h must
be determined from the leading edge geometry.

2.1.5.4 Side-Force Coefficient Derivative

For the lower half of the wing at 0 < a £ (7 = )

N (79)

CYL S

20



where, by definition

ACPL = (Cpleft B CPright)L

and from Eq. (66)

AC _ ~4Kcosf3 sinfB tan A sine sin (e+a)
PL 1+tan? A sin?e

Then,

(ev8)m (75)g., 5

and

C ) _ 4K A tan A sin € sin (e + a)
YB L S 1 + tan? A sin? ¢

For the upper half at 0 < a £ ¢

(C ) __ 4K A, tan A sin ¢ sin (e~a)
Yﬁ U S 1+ tan? A sin®e

2.1.5.5 Yawing-Moment Coefficient Derivative

For the lower half of the wing at 0 £ a < (7 - ¢)

c b
(CD)L = ‘_!1__[ 3 CYL + T(CAright - CAleft>L]
From Egs. (74), (79), and (80)

Ap
(CAright - CAleft)L =~ Cy, A,

and

(6ng),, = (ov8), 55~ (1 - <z

For the upper half at 0 £ a < «
- c _ 1
(CDB)U - (CYB)U 34 (l tan? A)

2.1.5.6 Rolling-Moment Coefficient Derivative

For the lower half of the wing at 0 £ a < (7 - ¢)

€y = L[~y (2 n)+ 2 (Cme,
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From Egs. (71), (79), and (80)

(CNleft - CNright>L = C;L _::Z_
and
(Clﬁ)L - (CYB)L -zl_ [_tz«x_ (K%_I“— B 1) - h] (88)
For the upper half at 0 < a < ¢
(CZB)U =T (CYIB)U % [?(ﬁ - 1) - h] (89)

2.2 BODY COMPONENTS

Body components typical of lifting re-entry configurations are the .
spherical segment, cone frustum, and circular cylinder. The loads
on these components are computed in the following sections. The
method of combining components to give a complete configuration is
described in Section 2. 3.

2.2.1 Spherical Segment

The spherical segment is a basic nose for bodies of revolution. The
nomenclature used in the derivation is shown in Fig. G.

‘Y

fhionlent Reference Point

A R sin -
Z
Z Section A-A

Fig. G Spherical Segment
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The direction cosines of the inward directed unit normal vector are

- cos (m,x) = — cos @
il cos (n,y) = — sin 6 cos ¢ (90) -
- cos (n,z) = - sin @ sin ¢

~Then, from Eq. (5)
cos = cos 8 (cos a cos § + sina sin 6 sin ¢) + sin B sin O cos ¢ (91)

At B = 0 the surface becomes shielded from the flow along a curve de-
fined by ¢ = ¢_, where ‘

¢, = —sin”" (—-—————-1 ) (92)

tan @ tan O

o ’

This equation is valid only for 6 2 (#/2 - a), since no shielding occurs
for 6 < (#/2 - a). The elemental surface area is

dA = R* sin 0 d6 d¢ ‘ (93)
It is assumed that C, = 0 on the base at all angles of attack, and the

coefficients and their derivatives are evaluated at 8 = 0.

2.2.1.1 Normal-Force Coefficient

The normal-force coefficient is given by
2
CN = KS_R ffA coszr; sin” 6 sing d¢ d6 (94)

Because of the limitations on the shielding equation, the evaluation of
Eq. (94) must be treated as three separate cases. In each case, the
integration is taken over the right side of the body and the result is
multiplied by 2.

(n 0 £ af (a/2 - 6y)

2 O, /2
Cn = ——2——ISS—R— f f cos’7 sin" 0 sin¢ de¢ d6 (95)
0 ~7/2 . .
- which gives .
. Cn —K—%T = —% cos a sin a sin" O (96)
s () (7/2 - 6) < a S w/2
R 2 m/2 —~a w/2 . s
=7 Cn = —-Z—E—E-—— fo J , cos' 7 sin" 6 sin¢ d¢ d8
- ~7/2
0], /2
+ f f¢ cos’ 7 sin’ 0 sin ¢ d¢ d6] (97)

n/2—a o
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then
S _ sina -1 cos Gb) : .4 [_77 L =1 1
CN KR? 2 {COS (sin a + cos a sin Op 2 + sin (tana tan (9],)]
(98)
0
_2(.)8_3~1’_.[cos2 Op (3 - sin12 - ) - 5:, v sin?a — cos? 6},}
(Imm) 7/2 £ a £ (a/2 + 6)
2 eb /2
Cy = J—Ié—R—— S S cos’n sin’ 0 sing dep d6 (99)
a-m/z "p, _

This equation reduces to Eq. (98).

To make the spherical segment compatible with the cone frustum,
let 6y = v/2 — 8. Then from Eqs. (96) and (98), for 0 < a < 5,

Cn KSR’ = —’27— cos a sina cos' & (100)
and for 8 £ a £ (# — 8)
Cn 57 - =i2a {cos"‘ (“‘Ei) + cos a cos' d [2L + sin” (—__tzzi)]

(101)

+ —~————Si’;8 [sin23(3 - **%-;) - 5] Vsin" @ ~ sin’ 5-}

s1in

For (s -6) <aswm, CN=0.

Equations (100) and (101) were evaluated for a = 0 to 180 deg and
6 = 0 to 70 deg, and the results are presented in Figs. 6a and b.

2.2.1.2 Axial-Force Coefficient
The axial-force coefficient is given by
_ KRZ 2 .
Ca = —5 ffA cos 7 cos 0 sinf d¢p d6 ] (102)
Evaluating Eq. (102) for the three cases:

(I). 0<Lacs(n/2 - 6p)

2 6, u/2
Ca = -—2-1%}1—— ] cos'n cos 0 sin d¢ d6 (103)
0 —m/2
SO
.2 .4
Ca _—_KSRz —T;h (Sm a;m % ~ cos’ a cos' 6 + cos’ a) (104)
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(M (#/2 - 6y) < al w/2

2 n/2—a w/a
Ca = _3%3__['[ f cos’ 7 cos 6 sin 6 d¢ d6
.0 ~1/2
‘ [ w/2 ;
+ f f cos’ 7 cos 0 sin 6 d¢ d@] (105)
C Tm/a—a T,
then
S _ 1 -1 V cos O (sin2 a sin' 0y
Ca XRZ - 3 {cos a cos (—:ﬁ> L G

2 4 2 ) [ 7 . =1 ( 1 )]
— cos a cos Oy + cos a)|— + sin —
2 tan @ tan O}

—cis——(;—c—o—s—e—h— (1 - 3 cos’ 6p) Vsin® a - cos’ Gb} (106)
(m) #/2 < a s (7/2 + 6p)

The equation for this case reduces to Eq. (106). Letting 6, = #/2 - 5,
Eqgs. (104) and (108) give for 0 < a < 5.

. 2 4
S _ sin @ cos &  _ 2 .4 2
Ca KRZ 9 ( 3 cos a sin & + cos a) (107)

and for 6§ £ a <(7 - &)

C s . _ 1 =1 ( sin &
A K Rz 2 COS a cos "S'in_'a"
2 4 -
+ (_S_EML@. — cos’a sin' & + cos’ a) [—TL + sin™! (—ta—‘l—i)]
2 2 tan a
+ w_sa_z_s_i_n_@_ (1 - 3 sin*8) Vsin®a — sin’a} ' (108)

For(nm -8)<aswnm Cp=0.

The numerical evaluation of Eqs. (107) and (108) is presented in Fig. 6c.

2.2.1.3 Pitching-Moment Coefficient

The resultant force acts through the center of éurvature, and the
pitching moment about the reference point is zero.

2.2.1.4 Side-Force Coefficient Derivative

A general relation for the side-force coefficient derivative for all
bodies of revolution can be obtained. Consider an axisymmetric body
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which is pitched through an angle o’ relative to the free-stream veloc-
ity and is then rolled through an angle ® about the X-axis as shown in
Fig. H.

Cx A €N e

Yz

Fig. H Force Coefficients on Body of Revolution at
Combined Angles of Attack and Sideslip

The force acting normal to the X-axis in the X, V_-plane is defined, in
coefficient form, as (CN)B=0 and remains constant as the body is
rolled. Then
Cy = - (CN)B=0 sin @ (109)

By resolving the velocity vector \_/(x> along the body X-, Y-, and Z- axes, it
can be shown that

tan & = 2B (110)

s51n a

or

. ‘ tan B
= 110
sin © \/tan2 ﬁ + sin’ a ( a)

Then,

Gy = — (C tan 3
Y ( N):Bzo Vtan? B8 + sin’a (111)

Differentiating with respect to g and then letting 8 = 0 gives

(cvp)py = wm (112)
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Thus, CYB may be obtained from Egs. (100) and (101). Ata = 0, CYB
is determined by substituting Eq. (100) into Eq. (112) and then letting
a = 0. Thus, ,

_ —~ KR cos &
.(CYﬁ)azo - 28 ('113)

The numerical evaluation of Eqs. (112) and (113) is presented in
Figs. 6d and e. : :

2.2.1.5 Yawing- and Rolling-Moment Coefficient Derivatives

As was the case with pitching moment, the yawing- and rolling-
moment coefficients and their derivatives are zero at the moment

reference point.
2.2.2 Flat-Topped Spherical Segment

The geometry of the flat-topped spherical segment is shown in
Fig. L ‘

Moment Reference Point
X §

X QF!‘R_/GP_ T Y
6 ¢

y .
A ' R sin ©
Z

Z
Section A-A

Fig. | Flat-Topped Spherical Segment
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The direction cosines, pressure coefficient, and elemental area
are the same as for the complete spherical segment. For 0 < a < #/2
the limits of integration on ¢ are from 0 to »/2 and the limits on ¢ are
from 0 to 6,. Then, from Eqgs. (94) and (102), with 6, = (#/2 - 8),

s 1 (I+sinza)<_7_7___ ) T . .
Cn XRT = 3 [ — 2 é) + 5 cosa sina cos é
(114)
+ —Si—n§—zc—os-6—(2 cos’8 ~ 1 - sin”a — —1—30— sin” a cos’ 3)]
S _ 1 |\ = 2 it R 4.
Ca RT T 3 [2 cos a (1 sin  8) + 4 Sin a cos 1)
. (115)

+ cos a sina(T"—-B—- sin  cos 8 + 2sin & c0538>]

where § is in radians.

Equations (112) and (113) apply only to complete bodies of revolu-.
tion, and CYBfOI‘ the flat-topped spherical segment must be obtained

from Eq. (9) which gives

Cy = — _K_SR_2” cos’ 7 sin’ 0 cos ¢ dpd o (116)
A
For the right side of the segment
61, /2 2
_ KR? dcos 7 . 2
CY/B = - S fo fO <——GF————>‘B:O sin" 0 cos ¢ dp dO (117)
where

<65;; 7}> = 2 cos ¢ sin 6 (cos a cos @ + sina sin 6 sin ¢) (118)
=0

Substituting Eq. (118) in Eq. (117) shows that Cyp is the same for both
sides of the segment. Then, multiplying Eq. (117) by 2 and performing
the integrations, with 6, = (#/2 — §),

CYB K1512=— %[?ﬂ cos a cos' & + sin a(%—- 6 — sind cos & ——%sinB cos’ 5)] (119)

The moment coefficients and their derivatives are zero for the indicated
reference point. For « 2 »/2 the equations for the complete spherical
segment also apply to the flat-topped spherical segment. The charac-
teristics of the flat-topped spherical segment are presented in Fig. 7.

2.2.3 Hemisphere

Although the hemisphere is a limiting case of either the spherical
wedge (A = 90deg) or the spherical segment (6§ = 0deg), the body is of
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enough interest to warrant a presentation of the equations. Letting
5 = 0 in Eqgs. (101), (108), and (112) gives, for 0 < a £ 7,

CN K?K’ = —Z— sina (1 + cos a) (120)

CA‘. KSRz = -% (1 + cos a) » ; ‘ : (121)
S

CYﬁ <ET - " {4-7- (1 + cos a) (122)

The moment coefficients and their derivatives are zero for a moment
reference point at the center of curvature. The characteristics of the
hemisphere are presented in Figs. 2 and 6.

2.2.4 Flaot-Topped Hemisphere

For 0 <a<#/2 andé = 0, Egs. (114), (11.5)’ and (119) give

Cn KSR‘ = % (1 + 2cos a sina + sin” a) (123)
Ca Kf{’ = % (1 + 2cos a sina + cos a) (124)
CYB KSRZ = - % (cos a + sin a) (125

The moment coefficients and their derivatives are zero for a moment

reference point at the center of curvature. For « = #/2 the equations
for the full hemisphere apply. The characteristics of the flat-topped

hemisphere are presented in Figs. 3 and 7.

2.2.5 Cone Frustum

The cone frustum is frequently used.-as a nose or flare section of
lifting bodies. The nomenclature used in the derivation is shown in

Fig. T

€=Rn/Rb
—T |4
T { 4 C\{é -

Moment Reference Point

Fig. J Cone Frustum
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The direction cosines of the inward directed unit normal vector are

cos (n,x) = —sin §
cos (n,y) = —cos 8 cos ¢ (126)
cos (n,z) = ~cos § sin ¢
Then, from Eq. (5)
cosn = cos 3 (cosa sind + sina cos § sin @) + sin B cos & cos ¢ (127)

At B = 0 the surface becomes shielded from the flow along a line de-
fined by ¢ = ¢ , where

¢>O = —sin " (-————22§§) (128)

This equation is valid only for a« 2 §, since there is no shielding of the

surface for « < §. The elemental surface area is :
dA _rdé dr (129)

- sin &

It is assumed that C, = 0 on the flat surfaces, and the coefficients and
their derivatives are evaluated at 8 = 0.

2.2.5.1 Normal-Force Coefficient

The normal-force coefficient is given by
Ry

Cy = —S—tfn—a qu fR r cos'n sing dr d¢ (130)

n

Since ¢, is not a function of r, the first integral may be evaluated to
give

Cy = KLR12,5(1+§) f¢ coszq sin ¢ d¢ (131)

where & = Rp/Rp -

Because of the limitations on the shielding equation, the integration of
Eq. (131) must be treated as two separate cases. In each case, the
integration is taken over the right side of the body and the result is multi-

plied by 2.
(N 0Lacsé
w/2

cy - KL U8 [ eosn sing d¢ (132)

which gives
(133)

= 7 cos a sina sind cos &

s
Cn KLRp (1+&)
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() & < as (7~ 8)

/2
KLRbS(l +£) f¢ cos' 7 sing d¢ (134)

which gives

C S _ . . T .=k tan &
N KLR, (158 cos a sin a sin & 4:058[2 + sin ona

(135)

9 si 2 2 5 .2 5 2 5 -
+ sin_ @ cos J + sin cos a ) \/Sin a — sin® &
3 sina cos &

At m ~ 8)S a<w, Cy = 0. Equations (133) and (135) were evaluated for
a = 0 to 180 deg and & = 0 to 40 deg, and the results are presented in

Fig. 8a.

|

2.2.5.2. Axial-Force Coefficient

The axial-force coefficient is given by

fb (136)

Car = —%f¢f r cos’y dr d¢

Integrating over r,

Ca = KLR}’;; + &) tan & f¢ cos’n d¢ (137)
Evaluating Eq. (137) for the two cases:
(I) 0<aZss
i /2
CA _ KL Ry (1+f) tan & f COSZU qu (138)
S —m/2
which gives
Ca KLRE 0+ 9 = ?rta;S (2 cos’ a sin° & + sin’ a cos §) (139)
(m &8 <a s (n - 5)
/2
Cp - KLHbS(]-Ff) tan & f¢ cosz'n d¢ (140)

which gives

S tan O 2 .2 .2 2 o . o—1 tanS)}
Ca KL, (138 9 {(2 cos a sin° & + sin a cos 5)[2 + sin <—~—-tan .

+ 3 cosa sind Vsin'a - sinza} (141)
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At (m - 8) <a<m, Cqp = 0. The numerical evaluation of Eqs. (139) and
(141) are presented in Figs. 8b and c.

2.2.5.3 Pitching-Moment Coefficient

The pitching-moment coefficient is given by

R} : 2 .
_ K r(Rp — r) cos 7 sin ¢
Cm = S 4 [f¢ fRn 2 dl‘ d¢

tan? &

(142)
— [ [ 1 cos’n sing dr dqﬁ]

Integrating over r,

2 3 3 Rp
K 1 R K ) )
Cm = [ tan? & (r b _ _r__) - ] f¢ cos rl.wsln ¢ do (143)

S4 2 3 3
Rn

Substituting Eq. (131) into Eq. (143) gives
R} 2 (1~-¢2)
Cm = Cn £ tan & [1 T "3 cos?o (l—f’)] (144)

Since the limits of integration on ¢ do not enter into this derivation,
Eq. (144) is valid for 0 < o < #.

2.2.5.4 Side-Force Coefficient Derivative

The side-force coefficient derivative is given by Eq. (112),

Cyg = - Cn (145)

sin a

and CY.B may be obtained from Egs. (133) and (135). For « = 0,
substituting Eq. (133) into Eq. (145) gives

v s _ .
(CY'B)a=0 KLRy (1% &) 7 sin & cos O (146)

The numerical evaluation of Egs. (145) and (146) is presented in Fig. 8d.

2.2.5.5 Yawing-Moment Coefficient Derivative
It is obvious from Eq. (145) that a general relation for all bodies of
revolution is

Cm
Cnﬁ - sin a (147)

Substituting Eqs. (144) and (145) in Eq. (147) gives
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_ Rp 2 (1-¢&%) .

Cnﬁ - CYB 4tan & [1 B 3 cos? & (1- Ez) (148)
Like Eq; (144), this equation is valid for 0 £ a £ 7 .

2.2.5.6 Rolling-Moment Coefficient Derivative

The resultant force acts through the center of the cone, and there
is no rolling moment about the indicated reference point. There-
fore, C{B =0.

2,2,6 Flat-Topped Cone Frustum

The geometry of the flat-topped cone frustum is shown in Fig. K.

Moment Reference Point

r I?b S 3
; S I

e = Rn/Rb Z
Fig. K Flat-Topped Cone Frustum

The direction cosines, pressure coefficient, and elemental area
are the same as for the complete cone frustum. For.-0 £ « £ 7/2, the
limits of integration on ¢ are from 0 to »/2. Then, from Eq. (131) and
(137)

CNKLRbS(l " )=% cos a sina sin & cos & + cos’ @ sin” & + —%- sin” @ cos & (149)

and
S i )
CA———T = tan O [2 cos a sin a sin 8 -cos &
KLR 1
b (14 §) .
+ L (cos’a sin® & + j_alf_&_c_-;s_zﬁ)] ‘
2 2

Equations (145) and (146) apply only to the complete cone frustum, and
Cyg for the flat-topped cone frustum must be obtained from Eq. (9).
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For the right side of the cone frustum,

m/2 Ry
Cy = - —S—t—K—a— fo J r coszn cos ¢ dr d¢ (151)
an Rn
and
KLRy (1+ &) (CE acoszrl
C - - - 1 d 15
Yﬁ 25 j;] aﬁ B:o cos ¢ 9‘5 ( 2)
where :
(a ;Og T’> = 2 cos 8 cos ¢ (cos a sin 8 + sina cos & sin ¢) (153)

Since Cyﬁ is the same for both sides of the cone frustum, Eq. (152) is
multiplied by 2 and integrated to give

CYB KL R, (Sl+.f) = ~ % cos a sin & cos 6 ~ ~§— sin a (?0528 (154) |

The pitching-moment coefficient and yawing-moment coefficient
derivative are given by Eqs. (144) and (148), respectively, with Cy
and CYB determined from Eqgs. (149) and (154). The rolling-moment
coefficient derivative is zero. For a« 2 »/2 the equations for the com-
plete cone frustum apply to the flat-topped cone frustum. The charac-
teristics of the flat-topped cone frustum are presented in Fig. 9.

2.2.7 Circular Cylinder

The circular cylinder is a special case of the cylindrical leading
edge (A = 90 deg) and the cone frustum (6 = 0 and ¢ = 1). Letting
A = 90deg in Egs. (38), (42), (43), (49), (50), and (55) gives

Cn KSR = % sin” a (155)

Ca =0 (156)

Cm = CN 4~ (157)

CY/S KI?R = - ~;— sin a (158)
- L

CDB = CYﬁ ) (159)

C‘Z/S =0 (160)

where the moment coefficients are referenced to the base of the cyl-
inder. The characteristics of the circular cylinder are presented in
Figs. 4 and 8. The Eqgs. (155) through (160) also apply to the flat-
topped circular cylinder. '

34



AEDC-TDR-64-25

2.3 COMPOSITE CONFIGURATIONS

The Newtonian analysis is based on the local flow deflection angle
and assumes that the only interference between components is that due
to shielding. Therefore, the configuration being analyzed can be broken
into independent elements corresponding to the components described in
the previous sections. From the equations and charts, the aerodynamic
characteristics of each component can be determined based on the refer-
ence area and length of the complete configuration. The contributions of
the individual components are added together to give the total coefficients
of the configuration. When this method is used to obtain the character-
istics of a composite configuration, one component may be in a position
where it shields another component from the flow, and the effects of this
shielding must be considered.

The summation of moment coefficients and their derivatives re-
quires a moment transfer from each component reference point to a
common reference point. Let X1 and Zt be the moment transfer

distances, positive as shown in Fig, L.

Component Reference Point

|

R

Reference Point of Complete Configuration

Fig. L Moment Transfer Lengths

Then,
, X7 Zr
Meonfiguration Cmcomponent - Cn W +‘ Ca T (161)
XT :
C =C - C 162
nﬁ_configuration nlgcomponent YB 4 ( )
= 2T ; (163)

C C + Cy
chonfiguration zﬁcomponent B 4

The characteristics of a typical composite configuration are evalu-
ated in the Appendix.
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APPENDIX

APPLICATION OF METHOD TO A TYPICAL DELTA WING

As an example of the use of the equations and charts given‘ in this
report, the aerodynamic characteristics of a typical delta wing were
computed. The configuration which was analyzed is shown in Fig. 10,
and the lengths, angles, and areas used in the calculations are given
below:

(1) Spherical-wedge nose component

R = 0.0212 Lp A = 75 deg
XT = =-0.518 Lp
ZT =0

(II) Swept-cylinder leading edge component

R = 0.0212 Ly A = 75 deg
L = 0.950 Lp ¢’ = 74.5 deg
Xt = 0.40 Lp

ZT = 0

(IlI) Swept-wedge wing component

c = 0.940 Lp A = 75 deg Ap/S = 0.888
t = 0.0675 Lp I = 15 deg Ap/S = 0.064
h = 0.0205 Lp € = 4.11 deg As/S = 0.119
Xt = 0.40 Lp
Zt =0

The coefficients were based on the planform area (S = 0.267 Lp*), with

the mean aerodynamic chord as reference length (£ = 0.667 Lp) for the
pitching-moment coefficient and the span as reference length (£ = 0.536 Ly)
for the yawing- and rolling-moment coefficients. For all angles of attack
it was assumed that the base of the delta wing contributed no axial force,
i, e., Cpbase = 0. The modified form of the pressure coefficient given by
Eq. (2) was used with K = 2.
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The characteristics of the nose component were determined from
Fig. 2 and the moment transfer equations, Egs. (161), (162), and (163).
Since ¢’ was not equal to 90 deg, it was necessary to use the equations
of Section 2, 1, 3 and the moment-transfer equations to evaluate the
leading-edge component. The wing component was evaluated with the
equations of Section 2, 1.5 and the moment-transfer equations.

The aerodynamic coefficients of each component and of the complete
delta wing are presented in Fig. 11. To provide a comparison of the
theory with hypersonic experimental results for this delta wing, data
obtained in the 50-in. Mach 8 Gas Dynamic Wind Tunnel, Hypersonic (B)
of the von Karman Gas Dynamics Facility, Arnold Engineering Develop-
ment Center,are also given. The data were obtained at a Mach number
of 8.1 and free-stream Reynolds numbers of 1.3 to 5.2 x 106 based on
model length. The theory predicts the experimental results with good
accuracy at angles of attack up to about 57 deg, where the shock wave
becomes detached. Above this angle of attack, the theory will give
better agreement with the experimental data if K = C, = 1.83 is used.

max

40

=5



Fig. 1 Axis and Coefficient Nomenclature
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Fig. 11 Continued
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